E) the reverse reaction.
24. With increasing pressure for a reaction that goes with a decrease in volume, the equilibrium shifts to the side:
A) formation of the starting materials;
B) formation of reaction products;
C) direct reaction;
D) formation of intermediate products;
E) the reverse reaction.
25. For an exothermic reaction, the equilibrium constant with increasing temperature:
A) decreases;
B) increases;
C) does not change;
D) becomes minimal;
E) becomes the maximum.
26. For an endothermic reaction, the equilibrium constant with increasing temperature:
A) decreases;
B) increases;
C) does not change;
D) becomes minimal;
E) becomes the maximum.
27. A reactor in which all particles move in a given direction, completely displacing, like a piston, the particles in front of the flow is called:
A) batch reactor;
B) ideal mixing reactor;
C) ideal displacement reactor;
D) batch mixing reactor;
E) ideal mixing reactor.
28. A reactor in which the incoming particles are instantly mixed with the particles in it and evenly distributed throughout the volume of the apparatus is called:
A) ideal displacement reactor;
B) total mixing reactor;
C) contact device;
D) autoclave;
E) distribution chamber.
29. The reactor operating in the mode - loading of raw materials, its chemical transformation and unloading of the finished product - is called:
A) batch reactor;
B) continuous reactor;
C) ideal mixing reactor;
D) ideal displacement reactor;
E) contact action reactor.
30. The reactor in which concentration of reagents smoothly changes on its height and respectively influences change of speed of reaction, is called:
A) reactor of continuous action;

